A solution of nonlinear fractional random differential equation via random fixed point technique

Authors

  • H. A. Hammad Department of Mathematics, Faculty of Science, Sohag University, Sohag 82524, Egypt
  • R. A. Rashwan Department of Mathematics, Faculty of Science, Assuit University, Assuit 71516, Egypt
Abstract:

In this paper, we investigate a new type of random $F$-contraction and obtain a common random fixed point theorem for a pair of self stochastic mappings in a separable Banach space. The existence of a unique solution for nonlinear fractional random differential equation is proved under suitable conditions.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Random fixed point theorems with an application to a random nonlinear integral equation

In this paper, stochastic generalizations of some fixed point for operators satisfying random contractively generalized hybrid and some other contractive condition have been proved. We discuss also the existence of a solution to a nonlinear random integral equation in Banah spaces.

full text

random fixed point theorems with an application to a random nonlinear integral equation

in this paper, stochastic generalizations of some fixed point for operators satisfying random contractively generalized hybrid and some other contractive condition have been proved. we discuss also the existence of a solution to a nonlinear random integral equation in banah spaces.

full text

Nonlinear Random Stability via Fixed-Point Method

The stability problem of functional equations originated from a question of Ulam 1 concerning the stability of group homomorphisms. Hyers 2 gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’ theoremwas generalized byAoki 3 for additive mappings and by Rassias 4 for linear mappings by considering an unbounded Cauchy difference. The paper of Rassias 4 has pr...

full text

Random fractional functional differential equations

In this paper, we prove the existence and uniqueness results to the random fractional functional differential equations under assumptions more general than the Lipschitz type condition. Moreover, the distance between exact solution and appropriate solution, and the existence extremal solution of the problem is also considered.

full text

Random-order fractional differential equation models

This paper proposes a new concept of random-order fractional differential equation model, in which a noise term is included in the fractional order. We investigate both a random-order anomalous relaxation model and a random-order time fractional anomalous diffusion model to demonstrate the advantages and the distinguishing features of the proposed models. From numerical simulation results, it i...

full text

Nonlinear Cable equation, Fractional differential equation, Radial point interpolation method, Meshless local Petrov – Galerkin, Stability analysis

The cable equation is one the most fundamental mathematical models in the neuroscience, which describes the electro-diffusion of ions in denderits. New findings indicate that the standard cable equation is inadequate for describing the process of electro-diffusion of ions. So, recently, the cable model has been modified based on the theory of fractional calculus. In this paper, the two dimensio...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 06  issue 04

pages  277- 287

publication date 2017-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023